
Articles
https://doi.org/10.1038/s41928-020-00510-8

1Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA, USA. 2IBM Research Zurich,  
Ruschlikon, Switzerland. 3Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy. 4Department of 
Information Technology and Electrical Engineering, ETH Zürich, Zurich, Switzerland. 5These authors contributed equally: Ali Moin, Andy Zhou.  
✉e-mail: moin@berkeley.edu; jan_rabaey@berkeley.edu

Wearable sensors are increasingly prevalent in health 
monitoring and human–machine interface applications 
as a result of improvements in their size and comfort1–4. 

Recent advances in flexible electronics have enabled the fabrica-
tion of wearable sensors that can mechanically bend and conform 
to non-planar and dynamic surfaces of the human body, allowing 
physiological signals of low bandwidth to be measured5–10. Hybrid 
systems that combine flexible sensors with rigid computational 
components on a separate substrate have also been developed8,10. 
Such systems are useful for applications that require local signal 
processing and miniaturized form factors.

To provide a real-time analysis of physiological signals, wear-
able biosensors can implement machine-learning models for signal 
processing. Local (in-sensor) processing of signals from biosen-
sors has advantages over wirelessly streaming raw data to an exter-
nal computational device, including reduced communication link 
bandwidth and radio power requirements. Processing the signals 
locally can also offer improved latency and security. Machine learn-
ing models for in-sensor processing are, however, typically trained 
offline before they are implemented in low-power embedded 
processors11,12.

Modern, lightweight machine-learning algorithms perform well 
when the training data align with the conditions that are expected 
during deployment, but, when the initial training of a classifica-
tion model fails to capture a wide set of conditions, the classifi-
cation accuracy of the model degrades, resulting in suboptimal 
performance or poor user experience13–18 (Supplementary Fig. 5). 
Therefore, the ability to train and update an in-sensor classification 
model during practical application is desirable.

Gesture recognition using surface electromyography (sEMG)19–24  
could benefit from a hybrid system with in-sensor processing. 
sEMG-based gesture recognition devices can measure electrical 
muscle activity from electrodes placed on the surface of the skin 
and perform pattern recognition on features that are extracted 
from these signals11,25. These devices should ideally have a small 
standalone form factor for autonomy, a high channel count and 
high-density electrode placement for more comprehensive spatial 
coverage and improved classification accuracy26,27, and in-sensor 
intelligence that is generalizable or adaptable to various wear 
conditions. Existing devices are either in non-wearable form fac-
tors26, dependent on external devices for computation28 or reliant 
on a small number of precisely positioned, bulky electrodes12,29,30. 
Furthermore, the systems that are capable of in-sensor (online) 
training do not support in-sensor model updates29,30. These sys-
tems thus cannot adapt to signal variations from sweating, fatigue, 
varying muscle contraction effort, and electrode displacement due 
to changing situational contexts such as limb and body position or 
device doffing and donning13–18.

In this Article, we report a wearable, high-density sEMG biosens-
ing system (Fig. 1a) that uses hyperdimensional (HD) computing to 
implement in-sensor adaptive learning and real-time inference for 
hand gesture classification. HD computing is an emerging comput-
ing paradigm that supports fast and simple learning and is inherently 
robust against noise and errors31. HD computing takes advantage of 
information being represented by very high-dimensional vectors 
(hypervectors) to perform otherwise complex tasks, such as classifi-
cation or reasoning, using simple computational operations31. This 
approach has already shown promising results in classification tasks 
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for physiological signals such as sEMG32, electroencephalography 
(EEG)33 and electrocorticography (ECoG)34, discriminating up to 
five classes on offline datasets.

To build our system, we used a hybrid method for interfacing 
soft conformal sensors and hard silicon-based integrated circuits 
(ICs). In particular, we combined a sensing electrode array printed 
on a flexible substrate (Fig. 1b,c) with a miniaturized printed circuit 
board (PCB) that includes complex sensing, processing and telem-
etry components (Fig. 1d,e). The large-area, high-density electrode 
array has 64 channels and was fabricated by screen printing using 
conductive and dielectric inks on a thin polyethylene terephthal-
ate (PET) sheet. The PET sheet is highly flexible and conforms well 
to the complex three-dimensional (3D) form of forearm muscles 
during contractions and relaxations. The system uses a low-power 
custom application-specific integrated circuit (ASIC) to collect 
the sEMG data for classification. The custom-designed ASIC35 can 
record and digitize the sEMG signals from multiple channels close 
to the electrode sites, reducing the need for bulky cable connections 
between electrodes and signal conditioning circuitry. We validated 
our biosensing device through a series of real-time experiments 
that model signal variations from real-world use cases. We obtained 
a hand gesture classification accuracy of 97.12% when classifying 
13 hand gestures using only a 4 s window of training data per ges-
ture. We demonstrated that the classification model can be updated 
locally to classify a larger set of hand gestures, as well as to recover 
from accuracy degradation due to theparticipant moving to a new 
arm position, replacing the device or wearing the device for a pro-
longed period of time.

Hybrid flexible biosensor design and fabrication
To create the flexible skin-worn interface, we screen-printed a uni-
form 4 × 16 array of circular electrodes (diameter r, 4.3 mm) and 
connective traces on a flexible PET substrate using conductive silver 
ink (NovaCentrix FG57b) sintered by photonic curing (Fig. 1b,c)36. 
The silver ink formulation included binders to help with cohe-
sion of the silver microflakes as well as adhesion to the substrate. 
Compared to high-density electrode array fabrication methods 

reported in the literature28,32,37,38, our screen-printing solution with 
photonic sintering allows the use of temperature-sensitive substrate 
materials and requires only subsecond curing time for cheaper 
and faster large-scale production. A dielectric encapsulation layer 
(NovaCentrix DE-SP1) was subsequently printed with via holes for 
exposing the electrode pads while insulating the conductive traces 
from the skin. Each printed layer was 15 µm thick. Overall dimen-
sions (29.3 cm × 8.2 cm) were chosen to wrap around the entire cir-
cumference of an above-average-sized forearm, capturing activity of 
the extrinsic flexor and extensor muscles involved in finger move-
ments with low inter-electrode pitch in both the proximal–distal 
and medial–lateral directions. Four electrodes per column were 
spaced 14.3 mm apart, and the columns were spaced 17.8 mm apart 
with vertical offsets of 7.15 mm.

The flexible electrode array was interfaced to a custom, 
eight-layer PCB (Fig. 1d,e) using a flat flexible connector (FFC) on 
a two-layer adapter board (Fig. 1c). All 64 channels from the elec-
trode array were sampled and digitized at 1 kS s−1 using a custom 
neural interface IC35 with very low power consumption (700 µW) 
in a small form factor. sEMG signals were processed within a 
system-on-a-chip field-programmable gate array (SoC FPGA), 
where we implemented a full training and classification algorithm 
to make the system entirely standalone. The device connected wire-
lessly to a base station computer using a 2.4 GHz radio SoC for 
reconfiguration and data logging, if needed. The board was pow-
ered using a single 3.7 V, 240 mAh lithium-ion battery weighing 4 g. 
The total weight of the wearable system was 26 g, with the compu-
tational unit PCB weighing 6 g and the electrode array and adapter 
weighing 16 g. In this configuration, battery life during continuous 
gesture recognition was ~6 h, with power dissipation being domi-
nated by raw data packetization and wireless transmission at greater 
than 1 Mbps (Supplementary Fig. 7).

on-body characterization of the electromyography 
acquisition
Using our device, we collected and analysed an offline sEMG dataset 
from five participants across multiple wear conditions simulating 

Flexible
electrodes

64-chan. neural 
front ends

FFC
conn.

Digitized
data FPGA SoC

(learning/inference)

Radio SoC

Rigid components PCB

a b c

e

Battery

Front Back

d

FFC conn.

Fig. 1 | Wearable biosensing system for seMG. a, The device on the forearm of a participant. b, Illustration of the screen-printing process. A squeegee 
and a screen are used to print sEMG electrode arrays onto flexible substrates. The electrode pattern is defined by features on the screen. c, The 
custom-designed, flexible 16 × 4 array of electrodes that conforms to the forearm to provide high-density, large-area sEMG recordings without individual 
wires. An adapter PCB with a flat flexible connector (FFC conn.) is used to interface the flexible electrode array with the rigid components. d, The 
miniaturized, eight-layer PCB that accommodates the complex, rigid components responsible for sensing, processing and telemetry. e, Block diagram of 
the main components constituting the wearable system.
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typical use cases (Fig. 2 and Supplementary Note 1). The dataset 
included flexion and extension of different finger degrees of free-
dom (DOF; Fig. 2a), with single-degree-of-freedom (single-DOF) 
gestures being performed in four different situational contexts and 
multiple-degree-of-freedom (multi-DOF) gestures being performed 
in only the baseline situational context (Supplementary Note 1). 
The device was worn by each participant as shown in Fig. 1a, with 
the centre of the array roughly aligned to the ulna of their domi-
nant arm (Methods). A single drop of conductive gel was placed on 
each electrode to improve skin contact and adhesion. Signals were 
recorded in a single-ended configuration, with an ECG Ag/AgCl 
electrode on the elbow used as reference. Figure 2b shows example 
waveforms recorded from all 64 channels during the flexion and 

extension of the middle finger DOF. Each 50 ms segment of each 
waveform is coloured based on the mean absolute value (MAV) fea-
ture derived from that segment, indicating the local amplitude of 
the sEMG. Activity in contrasting subsets of channels (overlaying 
the anterior flexor muscles or posterior extensor muscles) can be 
seen in the antagonistic movements.

Signal quality, as acquired using our wearable biosensing system, 
was compared to available recordings of the same gestures using a 
traditional commercial sEMG interface (Cometa used in NinaPro 
DB4)39–41 as well as a benchtop high-density sEMG acquisition set-up 
(CapgMyo)42. To compare the power spectrum of the recordings, we 
computed the Welch’s power spectral density estimate for the chan-
nel with the highest signal-to-noise ratio (SNR) while performing 
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Fig. 2 | Hand gesture classes used in the study and seMG recording characteristics. a, The single-DOF gesture subset includes individual finger flexions 
(flex.) and extensions (ext.) along with the ‘rest’ gesture. The multi-DOF gesture subset includes common, isometric hand postures involving multiple 
fingers. add., adduction; abd., abduction. b, Example raw waveforms recorded from all 64 channels during middle finger flexion and extension. Channels 
are organized starting with channel 0 on the surface nearest the radius, with increasing channels wrapping around the anterior side of the forearm to the 
surface nearest the ulna (~channel 32), and then around the posterior side back to the radius. Each 11 s gesture trial is divided into 1.5 s rest, a 2 s transition 
period to the gesture, a 4 s hold period, a 2 s transition period back to rest and 1.5 s rest based on the instructions given to the participant. The colour of the 
waveform indicates the local amplitude of the sEMG, as measured by MAV calculated over 50 ms segments. c, Example Welch’s power spectral density 
estimates of sEMG recordings from single channels of three systems, including a commercial sEMG interface with individually placed bipolar electrodes 
(Cometa + Dormo, NinaPro DB439–41), a benchtop high-density sEMG acquisition set-up (CapgMyo42) and our system. Solid lines represent the signal 
spectrum during performance of the middle extension gesture, while dotted lines represent the signal spectrum during rest. Spectral densities are normalized 
to the 0 Hz component of the rest spectrum for each recording system, for ease of comparison. d, Spot SNR for the example performances in c, measured 
as the ratio between the middle flexion spectrum and the rest spectrum. e, Distribution of overall SNR for the three compared systems for all channels 
during the performance of all single-DOF gestures. Shaded areas are the probability density histograms of SNR values. Lines are a Gaussian kernel fit to the 
distribution. Downward pointing triangles represent the medians.
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the middle extension gesture (gesture 4), the gesture that produced 
the highest SNR across all three devices (Fig. 2c). The frequency 
contents of the different recordings were qualitatively similar. Spot 
SNR was calculated by comparing the power spectrum during a 
gesture performance to the power spectrum during rest (Fig. 2d). 
Overall SNR (calculated as the integral of spot SNR) varied for dif-
ferent channels and different gestures (Fig. 2e). The Cometa and 
CapgMyo systems exhibited better peak SNR for the best channels 
and associated best gestures, probably because those systems con-
sist of differential, bipolar recording configurations with improved 
common-mode noise rejection. Despite this, median SNRs for the 
three systems were approximately the same. Furthermore, SNR val-
ues for our system were similar before and after long, 2 h wear ses-
sions, during which participants could sweat and the conductive gel 
could smear (Supplementary Fig. 2).

Gesture recognition algorithm with adaptive learning
We implemented an HD computing algorithm31 for training and 
inference of hand gestures. Raw data or preprocessed features 
(which are continuous-valued and low-dimensional) are projected 
onto 1,000D bipolar ({−1,+1}1,000, for simplicity in describing 
mathematical operations) or binary ({0,1}1,000, for implementation 
with digital logic) hypervectors with information fully distributed 
across all bits, analogous to the way the human brain utilizes vast 
circuits of neurons and synapses for learning and recall. Learning 
for classification tasks can be implemented with low-complexity 
element-wise majority functions for computing cluster centroids, 

or prototype hypervectors, which each represent a class. Similarly, 
inference can be implemented as a nearest neighbour search within 
the learned class prototype hypervectors to a given query hypervec-
tor using Hamming distance.

Figure 3 describes the algorithm for projecting sEMG data into 
hypervectors. Importantly, the same projection process is used for 
both learning and inference, allowing reuse of hardware modules 
for both in-sensor training and classification43. Signals are pro-
cessed in 250 ms sliding windows with 80% overlap, resulting in 
a latency of 250 ms and classification throughput of 20 predictions 
per second, which are suitable for real-time control44,45 (Fig. 3a). 
Each window is subdivided into five 50 ms feature segments, with 
the MAV feature being calculated per channel for each segment. 
Feature selection and hyperparameter tuning are described in more 
detail in Supplementary Note 2.

For each segment index t, the feature vector ft is projected into 
a hypervector St representing spatial information, that is, which 
electrode channels have higher feature values (Fig. 3b,c). Electrode 
channels are represented by unique, pseudo-random bipolar 
hypervectors stored in an item memory (IM), which remains 
unchanged throughout the training and deployment of the algo-
rithm. Each electrode channel vector IM(ch) is scaled by its cor-
responding feature value f tch

I
, and all scaled vectors are summed 

element-wise. The resultant spatial hypervector is then formed as 
St ¼ σ

P
ch

IM chð Þf tch
 

I

, where σ is a bipolar threshold function that 

turns positive elements to +1 and negative elements to −1 (Fig. 3c). 
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Fig. 3 | Hyperdimensional computing algorithm for projecting windows of seMG data into hypervectors. a, Example sEMG data and MAV feature values.  
The three example traces shown are divided into 50 ms feature segments, with segments colour-coded based on MAV feature values. b, A single classification 
window at time t consists of five feature segments totalling 250 ms, and consecutive classification windows overlap by 80%. Each feature segment ft is 
encoded into a spatial hypervector St = fspat(ft). The five consecutive spatial hypervectors are then bound temporally to form a spatiotemporal hypervector 
representing the entire window Gt = ftemp(St,St + 1,St + 2,St + 3,St + 4). The dashed grey line shows the division between the low-dimensional feature domain and the 
high-dimensional hypervector domain. c, Spatial encoding function fspat consists of computing a weighted sum of immutable item memory (IM) hypervectors 
IM(ch) weighted (·) by their corresponding features fch. The sum is bipolarized (σ) back to ±1. d, A temporal encoding function binds consecutive spatial 
hypervectors St together through permutation by k bits (ρk) and element-wise multiplication (×) operations. e,f, Principal component analysis for all 
classification windows from five trials of 13 single-DOF gestures. Analysis is shown for one participant in a baseline context. The top two principal components 
are plotted for features (e) and hypervectors (f) for each window. g, Proportion of explained variance for all principal component dimensions per dimension 
(top) and cumulative (bottom). Solid lines represent dimensions of the hypervector (HV) set; dashed lines represent dimensions of the feature (Feat.) set.
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The group of five spatial hypervectors is then encoded into a single 
spatiotemporal hypervector Gt (Fig. 3b,d). The order in which they 
occur is encoded by performing a bitwise rotation by k bits (ρk), with 
increasing k for older hypervectors (Fig. 3d). The rotated hyper-
vectors are multiplied together element-wise, resulting in a single 
1,000D bipolar hypervector representing the 250 ms window.

To visualize this projection into HD space, we performed prin-
cipal component analysis (PCA) on the classification windows 
consisting of five feature vectors, as well as on projected spatio-
temporal hypervectors from trials of the single-DOF gestures 
performed by one participant (Fig. 3e–g). The top two principal 
components (Fig. 3e,f) show general clustering of different ges-
tures, with hypervector clusters having more circular groupings 
that can be better represented by their cluster centroids. The 
dimensionality of the overall dataset can be seen in the propor-
tions of variance explained by each principal component dimen-
sion (Fig. 3g). For the hypervector dataset, nearly 500 principal 
component dimensions are required to explain 90% of the vari-
ance, whereas for feature vectors only ~10 dimensions are needed. 
This indicates that information is properly distributed across the 
large number of elements.

The encoded spatiotemporal hypervectors can be used either as 
training examples for creating or updating a model or as queries 
for inference using a trained model (Fig. 4). A prototype hypervec-
tor for each class is formed by computing the class centroid. For 
binary and bipolar hypervectors, this amounts to finding the major-
ity of each element across all training examples. These prototype 
hypervectors are then stored in an associative memory (AM), an 
entirely feedforward operation with a single pass over training data  
(Fig. 4a). This is in contrast to other neuro-inspired approaches in 
which training often employs sophisticated, iterative frameworks 
and is much more computationally demanding than classification 
(for example, gradient descent with backpropagation46). Adding 
new classes to the model simply involves adding new prototype 
hypervectors to the AM, again differentiating HD computing from 
other algorithms that may require full retraining or modifications 
to the architecture. Once all prototypes have been computed and 
stored, classification involves finding the nearest-neighbouring pro-
totype to a query hypervector (Fig. 4a).

To update a stored prototype to incorporate information 
about a new situational context for the same gesture, an approxi-
mated majority vote can be performed by merging elements from 

both the stored and the newly computed prototype hypervectors  
(Fig. 4b). Different proportions of new and old elements can be 
taken to weigh the contribution of each context. As more contexts 
are encountered, this proportion can be changed to tune the decay 
rate to avoid catastrophic forgetting of initial contexts. Very little 
additional overhead is required to perform model updates, com-
pared to standard gesture recognition algorithms like support vec-
tor machines, in which new support vectors must be selected among 
new and old training examples47,48, or linear discriminant analysis, 
in which training set statistics must be recalculated to a relatively 
high degree of precision49,50.

Real-time in-sensor implementation of adaptive learning 
and classification
We tuned model hyperparameters and validated the HD algorithm 
using the offline dataset (Supplementary Note 2) before optimiz-
ing it for efficient implementation using hardware description 
language (HDL) for synthesis on the device’s FPGA. Raw 15-bit 
analogue-to-digital converter codes were used as the input for 
feature extraction, with incremental calculations of the 50-sample 
MAV performed with each new sample. The implemented arithme-
tic operations consisted only of addition, two’s complement inver-
sion, and arithmetic right shift for division. Features were quantized 
and saturated to 6-bit integers based on analysis of the offline data-
set, optimizing for the dynamic range (range divided by step size) 
given the arithmetic requirements.

The 1,000-dimensional item memory elements were generated 
sequentially using a cellular automaton with a hardcoded seed51 
for a smaller memory footprint. Subsequent processing steps were 
exactly as described in the previous section on HD classification 
architecture, replacing algebraic operations on bipolar hypervectors 
with Boolean operations on binary vectors52. A shift register consist-
ing of 21 hypervectors was used as the AM to store trained proto-
type hypervectors and search for the closest class during inference. 
A single contextual update with 50% weighting was enabled for each 
AM entry by merging a predetermined set of 500 bits from a newly 
trained prototype into the stored one.

The implementation utilized 84% of resources available on 
our FPGA (Supplementary Note 3). Simulations verified that the 
algorithm (after acquiring the last sample of the last 50 ms fea-
ture window) had a latency of 539 cycles, or 26 μs when running 
at 20.48 MHz (Supplementary Note 4). The FPGA modules for  
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hypervectors approximates finding weighted centroids of clusters from different contexts of the same gesture class. The updated hypervector randomly 
takes elements from the stored prototype hypervector and the new context prototype hypervector. The proportion of bits taken from each hypervector 
determines the relative weight of each context in the updated prototype.
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Fig. 5 | Real-time, in-sensor classification performance in the baseline context. a, Classification confusion matrix during 4 s hold periods of baseline 
context testing for real-time experiments. White text values are percentages of correct predictions, red text value are percentages of incorrect predictions. 
The greyscale coloured background represents the proportion of predicted classes. b, Examples of real-time prediction outputs for four gesture trials. For 
each gesture trial, the top plot displays the features calculated over 50 ms segments for all channels. The bottom plot shows the 20 Hz classification results 
relative to trial timing. Purple vertical lines denote offline-calculated gesture onset in the first transition period and gesture offset in the second transition 
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classification were thus clock-gated to only be active during the 
first 26 μs after receiving a new sample, consuming no dynamic 
energy during the remaining time. Simulations and source meter 
measurements showed that the in-sensor HD algorithm operates 
with 2.437 μJ per sEMG sample and 4.39 μJ per classification every 
50 samples (Supplementary Note 5). Model training and updating 
consumed similar energy to classification steps. In all, the on-board 
algorithm accounted for less than 6% of the overall device power.

We verified the online, standalone operation of our device with 
two participants who were familiar with myocontrol. Four types of 
experiment were each conducted three times to test varying device 
usage conditions with all training, inference and updates performed 
completely on board and in real time. A custom-made graphical 
user interface (GUI) was used to instruct the user on what gesture to 
perform, transmit the correct gesture label and the operation mode 
(train/infer/update) to the device, and log data. Both raw sEMG 

data and the classified gesture class were streamed back to the GUI 
and displayed in real time, giving the participant visual feedback 
during inference modes.

Figure 5 shows real-time classification accuracy and prediction 
time series from the device during the performance of single-DOF 
gestures in the baseline context immediately after device donning and 
with a relaxed arm. Each gesture was performed once during training, 
including a trial at the beginning for the rest gesture. Participants were 
instructed to begin each gesture within a 2 s transition period, hold the 
gesture for a 4 s steady-state period, and relax back to the rest gesture 
within a second transition period, with 3 s of relaxation between each 
gesture (Fig. 5b). The GUI was configured to only enable the train-
ing mode on the device during the 4 s steady-state period. Exactly the 
same procedure was then repeated with the device in inference mode. 
Figure 5a shows the classification accuracy and confusion matrix for 
the 4 s steady-state periods of each gesture.
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across all six trials, with overlaid data points for each individual trial. a, The ability to update the HD classification model with new gestures. An initial model 
was trained and tested on single-DOF gestures only (yellow bar). The model was then updated with multi-DOF gestures to cover all 21 gestures (green bar). 
Results for a separate model trained and tested on multi-DOF gestures only are also illustrated (blue bar). b, The ability to update the HD classification 
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Actual gesture onset and offset times were determined offline 
with a combination of visual and changepoint analysis methods 
so as to estimate a ground truth label (Fig. 5b). Although the clas-
sification model was not trained on data that included gesture 
transitions or relaxation between trials, the device still performed 
inference during these periods. Gesture onset- and offset-aligned 
predictions across baseline context tests in all 24 experiments are 
shown in Fig. 5c. A higher error rate during relax periods (during 
which the prediction should be the rest gesture) is seen both before 
and after gesture performance, suggesting that the short periods 
between gesture movements may be included as training data to 
improve performance. Classification of the rest state is inherently 
more difficult, given that our hypervector projection algorithm 
encodes relative feature values rather than absolute feature values. 
Additionally, gesture transitions produced errors, requiring about 
500 ms from gesture onset (including algorithm latency) to achieve 
80% classification accuracy. The larger amount of misclassification 
following gesture offset is in part due to unintended movements in 
the opposite direction or of other finger degrees of freedom during 
transitions back to rest.

Figure 6 shows the steady-state gesture classification accuracy 
for the different experiments requiring online, in-sensor training 
and model updates. The first experiment (Fig. 6a) demonstrated 
the ability to update the HD classification model with new gestures. 
We trained and tested an initial model with only the single-DOF 
gesture subset (Fig. 6a, yellow bar) and achieved an average clas-
sification accuracy of 98.34%. We then updated the model with the 
multi-DOF gesture subset and tested on all 21 gestures (Fig. 6a, 
green bar) with 92.87% accuracy—a 5.47% degradation. Training 
and testing on the multi-DOF gesture only resulted in a similar 
accuracy of 95.04% (Fig. 6a, blue bar).

In the next three experiments, we demonstrated the ability to 
update the HD classification model with new contexts using only 
the single-DOF gestures. The context changes we explored were 
new arm position (going from the relaxed position with the arm 
at the side to the elbow rested on an armrest in an arm-wrestling 
position), new day with the device doffed and re-donned in between 
(>16 h apart, mean 19 h), and prolonged wear with the device worn 
while going about daily activities for 2 h. An initial model was 
trained and tested in the baseline context (Fig. 6b, solid green bar). 
The model was then tested in the new context, prior to updating 
(Fig. 6b, solid red bar). This resulted in, on average, an 11.89% 
accuracy degradation. The model was then updated in the new con-
text and tested again (Fig. 6b, striped red bar). In the case of arm 
position, the updated model was also tested in the initial context  
(Fig. 6b, striped green bar). In each case, accuracy was recovered 

after updating the model for the new context, with an average 
improvement of 9.50% compared to the initial model.

A comparison of our device to existing state-of-the-art sEMG 
systems is presented in Table 1. Our system is the only one tested in 
an incremental learning framework with in-sensor training, infer-
ence in multiple new situational contexts, and incremental updates 
to adapt to new contexts and recover accuracy. Compared to the sys-
tems that are capable of in-sensor classification, ours has the most 
electrode channels by at least a factor of eight. The custom-designed 
flexible electrode array and low-power integrated circuit front ends 
allow us to maintain a small form factor and low power consump-
tion, comparable to systems with a smaller number of channels, 
which are important for device wearability. A more detailed com-
parison of device implementations is provided in Supplementary 
Table 5. Our custom hardware implementation of the algorithm 
on an FPGA achieved the best classification energy efficiency, even 
with more gesture classes. Note that the total energy required for 
the processing (feature extraction and classification) was slightly 
higher compared to other reports because of the larger number  
of channels.

Conclusions
We have reported a self-contained, wearable sEMG biosensing sys-
tem that uses HD computing to process and classify hand gestures. 
All the functionalities of our system, including data acquisition 
using a printed flexible electrode interface, as well as training and 
classification with a machine-learning model, are incorporated into 
a compact device that requires no external computation. Our bio-
sensing system is comfortable to wear and offers fast initial train-
ing as well as on-the-fly adaptation, which are crucial for wearable 
human–machine interface applications in which physiological sig-
nals vary from user to user and are not stationary. In contrast to 
other state-of-the-art gesture-recognition systems, our device can 
perform training, inference and model updates locally and in real 
time to adapt to changing situational contexts.

Our results are promising for the development of standalone 
wearable devices with full, in-sensor machine-learning capabilities. 
Two natural extensions of this work are the incorporation of addi-
tional situational contexts (such as a larger variety of arm positions) 
and the incorporation of gesture transitions, which can either be 
treated as new contexts or as separate classes. As more information 
is encoded into gesture prototype hypervectors, it may eventually 
become beneficial to trade off memory footprint for improved clas-
sification performance and to represent gesture classes with more 
than one prototype hypervector. Finally, although our electrode 
array geometry was designed for forearm sEMG acquisition, the 

Table 1 | Comparison of this work with other seMG systems

Amma et al. 
(2015)26

Liu et al. 
(2017)12

Moin et al. 
(2018)32

Pancholi 
and Joshi 
(2019)29

Benatti et al. 
(2019)30

Cerone et al. 
(2019)28

This work

Wearable form factor ✗ ✓ ✓ ✓ ✗ ✓ ✓
Electrode type Flexible PCB Individual 

surface 
patches

Flexible PCB Ag-AgCl 
electrode 
band

Individual Ag-AgCl Flexible PCB Flexible screen-printed

Electrodes per array 192 4 64 8 8 32 64

Wireless streaming ✗ ✓ ✓ ✗ ✓ ✓ ✓

In-sensor classification ✗ ✓ ✗ ✓ ✓ ✗ ✓

In-sensor model training ✗ ✗ ✗ ✓ ✓ ✗ ✓

In-sensor adaptive 
update

✗ ✗ ✗ ✗ ✗ ✗ ✓

Number of classes 27 10 5 6 11 – 21
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low-cost and low-complexity screen-printing process can be used 
to create patterns for interfacing with other parts of the human 
body. This could enable a wider range of applications requiring 
low-latency, adaptive processing of physiological signals, such as 
electrocardiography or electroencephalography.

Methods
Hybrid interface for flexible and rigid components. An adapter PCB (Fig. 
1c) with a 64-position FFC (XF2W-6415-1AE, Omron Electronics) on one side 
and two DF12 connectors (Hirose Electric) on the other side was fabricated to 
interface the flexible array traces with the rigid ICs for sEMG signal acquisition 
and processing.

Rigid components PCB fabrication. A custom wireless neural recording and 
processing module (Fig. 1d,e) capable of recording and processing 64 channels 
of electrical physiological signal data as well as wirelessly streaming raw signals 
and classified gestures back to a base station was attached to the flexible electrode 
array. This recorded and digitized the sEMG signals from the electrodes using 
a custom neuromodulation IC35 (Cortera Neurotechnologies) with d.c.-coupled 
front ends and a 1 kHz sampling rate. Data aggregation and preprocessing as well 
as HD model training, inference and update were performed on an SoC FPGA 
(SmartFusion2 M2S060T, Microsemi). A 2.4 GHz radio (nRF51822, Nordic 
Semiconductor) streamed out the raw sEMG signals and the classified labels and 
distances. These components enabled small form factor and low-power operation 
(~6 h of classification using a standard 240 mAh 3.7 V Li-ion battery), while 
eliminating the need for bulky individual cables connecting each electrode to the 
neural front end, making the device comfortably wearable for extended periods 
with enhanced signal quality. Moreover, digitizing the signal next to its source 
increases the SNR.

The fabricated eight-layer PCB also contained a six-axis accelerometer 
and gyroscope (MPU-6050, InvenSense), a 512 Mb low-power SDRAM 
(MT46H32M16LFBF-5, Micron Technology) and an extra 64-channel 
neuromodulation IC35 (Cortera Neurotechnologies) for the purpose of providing 
inertial sensor data, more on-board memory and an extended number of sEMG 
channels to 128, respectively, although they are unused in this work.

Graphical user interface. A custom GUI developed in Python 3.7 was run on  
the base station for receiving and logging the streamed data, configuring the  
sEMG signal acquisition system and providing participants with gesture 
information and timing. The GUI enabled experimenters to select gesture subsets, 
update metadata for the saved files and update gesture timing prior to each 
recording session. Moreover, it provided visual feedback to participants about the 
current classified gesture.

Array application. Before wrapping the array around the participant’s forearm, a 
small drop of conductive hydrogel (SignaGel Electrode Gel, Parker Laboratories) 
was applied to each electrode surface individually to improve the skin–electrode 
interface impedance. The array was laid on a flat surface with electrodes facing 
up, and the participant was instructed to roughly align the centre of the array to 
the ulna of their dominant hand. The ends of the array were then wrapped around 
each side of the forearm while the participant remained at rest, and the ends 
were joined together with strips of adhesive tape. A single commercial Ag/AgCl 
electrode (H124SG, Covidien Kendall) was attached to the participant’s elbow on 
the same arm as a reference potential for the voltage measurements (Fig. 1a).

Gesture recognition experiments. Participants were asked to perform a total of 
21 different gestures consisting of a rest/relax position and two subsets of finger 
movements and positions: (1) single-DOF flexions and extensions of individual 
fingers and (2) multi-DOF hand postures involving multiple fingers (Fig. 2a). Each 
participant performed a total of four experiments, with each experiment repeated 
three times.

Experiment 1 was designed to test a baseline accuracy for the single- and 
multi-DOF gesture subsets separately, and an updated model containing all 21 
gestures by adding multi-DOF gestures to the existing single-DOF trained model. 
Experiment 2 then introduced an arm position context variation to the single-DOF 
gestures. The participant performed each gesture with their elbow rested on an 
armrest in an arm-wrestling position. For experiment 3, the model was first trained 
and tested on day 1, and then updated on day 2 after doffing and re-donning the 
device in approximately the same location on the arm. This introduced a new wear 
session context variation. In experiment 4, participants were given a 2 h break 
between the initial training and subsequent update, during which they wore the 
sEMG acquisition device while going about their daily activities. This introduced a 
prolonged wear contextual variation.

Each trial lasted 8 s (Fig. 2b), with 3 s of rest before the next trial. The 
participant was told to begin the gesture within a 2 s transition window, which 
contained the transient, non-stationary part of the sEMG signal for that gesture. 
After the 2 s transition window, the participant was asked to hold the gesture for 
4 s, constituting the steady-state part of the sEMG signal. Finally, the participant 

was directed to return to the rest position within another 2 s transition window. 
These directions ensured that the steady-state portion of the gesture could easily be 
labelled as part of the middle 4 s segment. All experiments were performed in strict 
compliance with the guidelines of IRB and were approved by the Committee for 
Protection of Human Subjects at University of California, Berkeley (protocol title, 
Flex EMG Study; protocol no., 2017-10-10425). Informed consent was obtained 
from all participants.

Data segmentation. For this study, only data from the 4 s steady-state hold 
period were used for classification. During training and testing, we generated a 
spatiotemporal vector for every 250 ms segment of data, sliding by 50 ms MAV 
feature windows (200 ms overlap). Thus, within a single 4 s gesture trial, 76 
different vectors were encoded either for accumulating in the AM or for making 
76 different inferences. Classification accuracy was calculated as the percentage of 
inference results that matched the labelled gesture, without any post processing or 
voting. Commands were sent to the device to put it in training, inference or update 
mode, synchronized to the experiment and instructions.

Algorithm implementation. The in-sensor algorithm was implemented in Verilog 
HDL and synthesized using Libero SoC design software (Microsemi Corp.). The 
FPGA resource utilization and algorithm latency are provided in Supplementary 
Notes 3 and 4, respectively. The algorithm energy per classification is calculated 
based on the instantaneous power measurements shown in Supplementary Note 5 
(measured by an Agilent B2902A precision source/measure unit in 20 μs intervals) 
and cycle counts (Supplementary Note 4).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this Article.

Data availability
Both the offline sEMG dataset and the real-time experiment data collected for this 
study are available at https://github.com/flexemg/flexemg_natelec. NinaPro data 
were accessed via http://ninapro.hevs.ch (Dataset 4) and CapgMyo data via http://
zju-capg.org/myo/data/ (DB-c).

Code availability
The source code used for offline model validation, in-sensor implementation and 
analysis of results is available at https://github.com/flexemg/flexemg_natelec.
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Sample size Validation of the machine learning model was performed on data collected from five subjects, with each subject performing 5 repetitions of 
each gesture in each context, allowing for 5-fold cross-validation studies. Real-time experiments were performed three times each for two 
subjects. Our experiments were intended to demonstrate device capabilities rather than show any biological or behavioral effects. Thus, 
multiple repeated experiments with the same two subjects were sufficient.

Data exclusions No data were excluded from the analysis.

Replication Each experiment was performed three times for each of two subjects. All attempts at replication were successful. 

Randomization Randomization was not relevant to our study since experiments were specific to each subject.

Blinding Blinding was not relevant to our experiments as there were no subjective elements to assessing the device's capabilities. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
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ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics 5 male able-bodied human subjects between 25 and 41 years old. The study population is a non-vulnerable highly-educated 
adult population who are the faculty, graduate students and staff of UC Berkeley.

Recruitment A recruitment email was sent out that described the study and made it clear that participation is voluntary and that non- 
participation will have no impact.

Ethics oversight Committee for Protection of Human Subjects at University of California, Berkeley (Protocol title: Flex EMG Study. Protocol 
number: 2017-10-10425). Informed consent was obtained from all participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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